Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.482
Filtrar
1.
Sci Rep ; 14(1): 8215, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589479

RESUMO

To investigate de effect of PAb gel on the bone tissue of rats submitted to Bisphosphonate-related osteonecrosis of the jaws (BRONJ). Initially, 54 animals were submitted to BRONJ model by Zoledronic Acid (ZA) (0.1 mg/kg 3x/wk for 9 wk, ip), followed by the 1st upper left molar extraction at the 8th wk. After tooth removal, the animals were divided into 3 groups, ZA that received placebo gel or PAb gel that received 1% PAb gel, inside the dental alveolus. The control Group (CONTROL) received 0.1 mg/kg of 0.9% saline and then placebo gel. Three weeks after tooth extraction, the animals were euthanized, and maxillae were colleted for macroscopic, radiographic, histological and Raman spectomery assays. Additionally, GSK3b, beta-catenin, and Runx2 mRNA expressions were determined. Blood samples were collected for the analysis of Bone-specific alkaline phosphatase (BALP) levels. PAb gel improved mucosal healing, increased the number of viable osteocytes, while it reduced the number of empty lacunae, as well as the amount of bone sequestration. Furthermore, PAb gel positively influenced the number and functionality of osteoblasts by stimulating Wnt signaling, thereby inducing bone remodeling. Additionally, PAb gel contributed to improved bone quality, as evidenced by an increase in bone mineral content, a decrease in bone solubility, and an enhancement in the quality of collagen, particularly type I collagen. PAb gel mitigated bone necrosis by stimulating of bone remodeling through Wnt signaling and concurrently improved bone quality. PAb gel emerges as a promising pharmacological tool for aiding in BRONJ therapy or potentially preventing the development of BRONJ.


Assuntos
Agaricus , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Ratos , Animais , Difosfonatos , Via de Sinalização Wnt , Imidazóis , Ácido Zoledrônico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Maxila/patologia , Extração Dentária
2.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639797

RESUMO

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Assuntos
Agaricus , Ecossistema , Cafeína , Peróxido de Hidrogênio , Água , Chá , Carbamazepina
3.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1144-1153, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621961

RESUMO

Agaricus blazei is a rare medicinal and edible fungus with a crispy taste and delicious flavor. Both fruiting body and mycelium are rich in polysaccharides, sterols, terpenoids, peptides, lipids, polyphenols, and other active ingredients, which have strong pharmacological activities such as anti-tumor, lipid-lowering, glucose-lowering, immunomodulation, optimization of intestinal flora, and anti-oxidation. Therefore, it is a kind of fungal resource with a great prospect of edible and medicinal development. Among the reported chemical components of A. blazei, blazeispirol is a series of sterol compounds unique to A. blazei, which has a spiral structure and is different from classical steroids. It is an important active ingredient found in the mycelium of A. blazei and has significant hepatoprotective activity. It can be used as a phylogenetic and chemotaxonomic marker of A. blazei strains and is considered an excellent lead compound for drug development. According to the skeleton structure characteristics, the 17 discovered blazeispirol compounds can be divided into two types: blazeispirane and problazeispirane. In order to further explore the resource of blazeispirol compounds of A. blazei, the discovery, isolation, structure, biological activity, and biosynthetic pathways of blazeispirol compounds of A. blazei were systematically reviewed. Besides, the metabolic regulation strategies related to the fermentation synthesis of blazeispirol A by A. blazei were discussed. This review could provide a reference for the efficient synthesis and development of blazeispirol compounds, the research and development of related drugs and functional foods, and the quality improvement of A. blazei and other medicinal and edible fungi resources and derivatives.


Assuntos
Agaricus , Neoplasias , Filogenia , Polissacarídeos , Esteroides , Agaricus/química , Agaricus/metabolismo
5.
Fungal Biol ; 128(2): 1698-1704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575243

RESUMO

Peat-based casings have been used for button mushroom (Agaricus bisporus) cultivation for decades but there is environmental pressure to find sustainable alternatives. This work aimed to characterise the physicochemical properties of peat and peat-substituted casings and to determine their influence on mushroom cropping to enable alternatives to be identified. British milled peat and German wet-dug peat casings produced smaller mushrooms than Irish wet-dug peat casing although yield was unaffected. Substitution of milled or wet-dug peat casings with 25% v/v bark, green waste compost or spent mushroom casing, except Irish wet-dug peat casing with spent peat mushroom casing, caused reductions in mushroom yield and/or size. These poorer results of casings compared with Irish wet-dug peat casing corresponded with lower water retention volumes at matric potential (Ψm) -15 kPa but not after drainage from saturation or at -1 kPa. Air-filled porosity (17-22% v/v), compacted bulk density after drainage (670-800 g L-1) and electrical conductivity (0.30-0.54 mS cm-1) of casings were unrelated to their mushroom cropping performance. In-situ casing measurements with electronic tensiometers confirmed laboratory casing physical analysis: at the same casing Ψm, Irish wet-dug peat casing had a higher water content than German wet-dug peat casing and produced larger mushrooms for the same yield. Solid-state foam-based tensiometers were more robust than water-filled tensiometers but they did not detect the full decrease in casing Ψm during a flush of mushrooms. The results indicate that if sustainable materials are to replace wet-dug peat casing with the same mushroom yield and size quality performance, they should have equivalent water retention volumes at Ψm -15 kPa. Measurement of casing Ψm with electronic tensiometers to control mushroom crop irrigation should assist in this transition.


Assuntos
Agaricus , Solo/química , Meios de Cultura/química , Água
6.
Pestic Biochem Physiol ; 199: 105759, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458662

RESUMO

The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.


Assuntos
Agaricus , Polilisina , Pseudomonas , Polilisina/farmacologia , Resistência à Doença
7.
Int J Med Mushrooms ; 26(4): 9-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523446

RESUMO

To assess the strain resources and address production challenges in Ganoderma cultivation. 150 Ganoderma strains were collected from 13 provinces in China. A comparative analysis of agronomic traits and effective components was conducted. Among the 150 strains, key agronomic traits measured were: average stipe diameter (15.92 mm), average stipe length (37.46 mm), average cap horizontal diameter (94.97 mm), average cap vertical diameter (64.21 mm), average cap thickness (15.22 mm), and average fruiting body weight (14.30 g). Based on these agronomic traits, four promising strains, namely, L08, L12, Z21, and Z39, were recommended for further cultivation and breeding. The average crude polysaccharide content ranged from 0.048% to 0.977%, and triterpenoids ranged from 0.804% to 2.010%. In addition, 73 triterpenoid compounds were identified, constituting 47.1% of the total compounds. Using a distance discrimination method, the types, and relative contents of triterpenoid compounds in 150 Ganoderma strains were classified, achieving 98% accuracy in G. lingzhi identification. The 16 triterpenoid components used for G. lingzhi identification included oleanolic acid, ursolic acid, 3ß-acetoxyergosta-7,22-dien-5α-ol, ganoderic acid DM, ganoderiol B, ganorderol A, ganoderic acid GS-1, tsugaric acid A, ganoderic acid GS-2, ganoderenic acid D, ganoderic acid Mf, ganoderic acid A, ganoderic acid K, ganoderic acid V, ganoderic acid G, and leucocontextin J. This study provides valuable insights for exploring and utilizing Ganoderma resources and for the development of new varieties.


Assuntos
Agaricales , Agaricus , Antineoplásicos , Ganoderma , Reishi , Triterpenos , Triterpenos/análise , China
8.
Food Funct ; 15(6): 2879-2894, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38318946

RESUMO

Agaricus bisporus contains amino acids associated with thickness and full-mouthfeel, making it a potential candidate for salt substitutes and flavor enhancers in various food applications. Kokumi peptides were isolated from the enzymatic digest of Agaricus bisporus using ultrafiltration nanofiltration, gel chromatographic separation, and RP-HPLC, coupled with sensory evaluation. Subsequently, the peptides, EWVPVTK and EYPPLGR, were selected for solid-phase synthesis based on molecular docking. Sensory analysis, including thresholds, time intensity, and dose-configuration relationships, indicated that EWVPVTK and EYPPLGR exhibited odor thresholds of 0.6021 mmol L-1 and 2.332 mmol L-1 in an aqueous solution. Molecular docking scores correlated with low sensory thresholds, signifying strong taste sensitivities. EWVPVTK, in particular, demonstrated a higher sense of richness at lower concentrations compared to EYPPLGR. Molecular docking and dynamics simulations elucidated that the interactions between Kokumi peptides and the CaSR receptor primarily involved hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Both EWVPVTK and EYPPLGR exhibited stable binding to the CaSR receptor. Active binding sites were identified, with EWVPVTK interacting at Arg 66, Asp 216, Gln 245, and Asn 102, while EYPPLGR engaged with Ser 272, Gln 193, Glu 297, Ala-298, Tyr-2, and Agr-66 in hydrophilic interactions through hydrogen bonds. Notably, these two Kokumi peptides were found to be enriched in umami and sweet amino acids, underscoring their pivotal role in umami perception. This study not only identifies novel Kokumi peptides from Agaricus bisporus but also contributes theoretical foundations and insights for future studies in the realm of Kokumi peptides.


Assuntos
Agaricus , Peptídeos , Paladar , Simulação de Acoplamento Molecular , Simulação por Computador , Peptídeos/química , Aminoácidos/química
9.
Trop Anim Health Prod ; 56(2): 79, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356055

RESUMO

This study was performed to determine the effect of mushroom powder (MP) (Agaricus bisporus) supplementation on growing Japanese quail (Coturnix coturnix japonica). A total of 300 unsexed 1-day-old Japanese quails with similar body weights (8.38 ± 0.2 g) were randomly assigned to five treatment groups with six replications. Additions of 0, 0.25, 0.50, 0.75, or 1.00% of MP to the basal diet were used to develop the treatment groups. Quails were fed ad libitum for 42 days. At the end of the experiment, 12 quails from each experimental unit were euthanised to determine performance, carcass traits, meat quality, and bone biochemical properties. Results showed that all dietary MP did not negatively affect any performance parameters (P > 0.05), while by the third week of life, there was an increase (P < 0.05) in body weight and body weight gain in the quails of the 0.75% MP group compared to the control group. Nevertheless, these differences disappeared at the end of the trial (P > 0.05). No differences were observed (P > 0.05) for any of the studied carcass traits, except for the pancreas weight which decreased (P < 0.05) with the addition of high MP (1.00%). Regarding meat quality, all color parameters were affected on the fifth day of sampling (P < 0.05) but not on the first day (P > 0.05). It was detected that the breast of the quails in group 0.75% MP had the highest L* value and the lowest a* value. While the breast of the 1.00% MP group had the highest b value and the lowest pH value. Dietary MP enhanced oxidative stability, reducing malondialdehyde (MDA) value in the breast compared to the control at both sampling points (P < 0.01), being more noted on the fifth day of sampling. Bone biomechanical properties (in terms of shear force or shear stress) were improved (P < 0.01) with the dietary addition of MP at 0.75% compared to the control. It can be suggested that MP is a secure ingredient in animal feed without negatively affecting performance parameters, carcass traits, or meat quality. Therefore, including an interval of 0.50-0.75% of MP in the diet of growing quails could be a suitable strategy to improve certain parameters such as the meat's oxidative stability and the bone's biomechanical parameters. Moreover, the efficacy of MP on performance development would be greater during the first weeks of the quails' life due to their intestinal conditions at this stage.


Assuntos
Agaricus , Coturnix , Animais , Codorniz , Pós , Dieta/veterinária , Suplementos Nutricionais , Carne/análise , Ração Animal/análise
10.
Int J Biol Macromol ; 262(Pt 2): 130110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346624

RESUMO

In this study, chitin was isolated from a mushroom (Agaricus bisporus) using deep eutectic solvents, choline chloride: acetic acid (CCAA), choline chloride:lactic acid (CCLA) and choline chloride:glycerol (CCG). According to the results, three DES systems were also useful for the isolation of chitin from mushrooms. The deproteinization efficiency was 84.25 %. The degree of deacetylation of chitin isolated by microwave-assisted extraction using CCAA was 69 %. This result was promising to produce chitosan in a one-step, base-free process using deep eutectic solvents. FTIR, XRD, SEM and XPS were used to analyse the physicochemical properties of the chitin.


Assuntos
Agaricus , Quitosana , Quitina/química , Quitosana/química , Solventes Eutéticos Profundos , Solventes/química , Agaricus/química , Colina/química
11.
Vet Med Sci ; 10(2): e31367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356455

RESUMO

BACKGROUND: Alternatives to antibiotics have been suggested by banning their use in the poultry industry. Garlic and mushroom are two important phytobiotic compounds in poultry nutrition. OBJECTIVES: This study was conducted to evaluate the effects of supplementing diets with garlic and mushroom powder (MP) on growth performance, humoural and cellular immunity, and white blood cell counts of broiler chickens. METHODS: Five hundred and seventy-six 1-day-old male broiler chickens (Ross 308) were assigned to 8 treatments with 6 replications (12 birds per replication) based on a completely randomized design in a factorial arrangement of 4 × 2 with 4 levels of garlic powder (GP; 0.00%, 0.50%, 1.00%, and 1.50%) and two levels of MP (0.00% and 1.00%). RESULTS: No significant effects of GP and MP on the growth performance and cutaneous basophil hypersensitivity were observed (p > 0.05). According to the regression equation, with increasing levels of GP in the diets, the relative weight of the bursa of Fabricius and thymus increased (p < 0.05). The effect of increasing levels of GP on the Newcastle disease virus (NDV) titre was greater in the absence of MP (p < 0.05). With increasing levels of GP in the diets, the percentages of lymphocytes and heterophils to lymphocytes ratio increased and reduced, respectively (p < 0.05). CONCLUSIONS: This experiment has revealed that increasing the level of GP improved the immune response of broilers without affecting performance. The effect of increasing the level of GP on the NDV titre was more significant in the absence of MP.


Assuntos
Agaricus , Alho , Animais , Masculino , Galinhas/fisiologia , Imunidade Celular , Vírus da Doença de Newcastle , Pós
12.
Microbiol Spectr ; 12(4): e0339523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380912

RESUMO

Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.


Assuntos
Agaricus , Basidiomycota , Burkholderia gladioli , Burkholderia , Burkholderia gladioli/genética , Filogenia , RNA Ribossômico 16S/genética , Agaricus/genética , Burkholderia/genética , Verduras
13.
Int J Biol Macromol ; 261(Pt 2): 129611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266840

RESUMO

Based on the key factor of spontaneous modified atmosphere packaging (MAP)-gas permeability, a spontaneous MAP film was created for the preservation of Agaricus bisporus by delaying the senescence of white mushrooms. Compared with other mixed films, hydroxypropyl methylcellulose (HPMC)/pueraria (P)-2 showed better mechanical properties, barrier properties and thermal stability energy. Applying the HPMC/P-2 film for preserving white mushrooms can spontaneously adjust the internal gas environment. Moreover, the O2 concentration in the package remained stable at 1-2 %, and the CO2 concentration was between 8 % and 14 %. The film can effectively reduce the respiration rate of white mushrooms, inhibit enzymatic browning, maintain their good color and texture, and delay their aging. In conclusion, the HPMC/P-2 film can be used not only for fruit and vegetables preservation but also provide theoretical basis for sustainable food packaging.


Assuntos
Agaricus , Pueraria , Derivados da Hipromelose , Embalagem de Alimentos , Atmosfera
14.
Food Res Int ; 177: 113917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225152

RESUMO

This study aimed to screen peptides with saltiness-enhancing effects from enzymatic hydrolyzed Agaricus bisporus protein and quantify their salt-reduction. The saltiness evaluation standard curve was first established to evaluate salinity. The peptide fractions (U-1, U-2, and U-3) were obtained from enzymatic hydrolyzed Agaricus bisporus protein by ultrafiltration. Quantitative calculations showed that the U-2 fraction (200-2000 Da) had the strongest saltiness-enhancing effect, and its perceived saltiness in 50 mmol NaCl solution was 60.24 ± 0.10 mmol/L. The peptide sequences were identified by liquid chromatography/mass spectrometry (LC-MS/MS). Results suggested that the potential peptides with saltiness-enhancing effects were umami peptides. Molecular docking with the umami receptor T1R1/T1R3 revealed that the key amino acid residues were Asp82, Glu392, Glu270, and Asp269. Furthermore, peptide YDPNDPEK (976.4138 Da), DDWDEDAPR(1117.4312 Da), and DVPDGPPPE (1058.4668 Da) were synthesized for salt-reduction quantification. 0.4 % peptide YDPNDPEK in NaCl solution was found to have a salt-reduction of 30 %, which provided the basic theory and data for the salt-reduction of peptide in enzymatic hydrolyzed Agaricus bisporus protein.


Assuntos
Agaricus , Peptídeos , Cloreto de Sódio , Espectrometria de Massas em Tandem , Agaricus/enzimologia , Cromatografia Líquida , Simulação de Acoplamento Molecular , Peptídeos/química , Hidrolisados de Proteína , Cloreto de Sódio na Dieta
15.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279283

RESUMO

Mushrooms are a nutritionally rich and sustainably-produced food with a growing global market. Agaricus bisporus accounts for 11% of the total world mushroom production and it is the dominant species cultivated in Europe. It faces threats from pathogens that cause important production losses, including the mycoparasite Lecanicillium fungicola, the causative agent of dry bubble disease. Through quantitative real-time polymerase chain reaction (qRT-PCR), we determine the impact of L. fungicola infection on the transcription patterns of A. bisporus genes involved in key cellular processes. Notably, genes related to cell division, fruiting body development, and apoptosis exhibit dynamic transcriptional changes in response to infection. Furthermore, A. bisporus infected with L. fungicola were found to accumulate increased levels of reactive oxygen species (ROS). Interestingly, the transcription levels of genes involved in the production and scavenging mechanisms of ROS were also increased, suggesting the involvement of changes to ROS homeostasis in response to L. fungicola infection. These findings identify potential links between enhanced cell proliferation, impaired fruiting body development, and ROS-mediated defence strategies during the A. bisporus (host)-L. fungicola (pathogen) interaction, and offer avenues for innovative disease control strategies and improved understanding of fungal pathogenesis.


Assuntos
Agaricus , Hypocreales , Espécies Reativas de Oxigênio , Agaricus/genética , Hypocreales/fisiologia
16.
Food Funct ; 15(3): 1191-1207, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38230753

RESUMO

The gut microbiota plays a central role in maintaining human health and has been linked to many gastrointestinal diseases such as ulcerative colitis (UC). Agaricus bisporus is a famous edible mushroom, and Agaricus bisporus polysaccharides (ABPs) and the two purified fractions (ABP-1 and ABP-2) were demonstrated to exhibit immunomodulatory activity in our previous study. Herein, we further found that ABPs, ABP-1, and ABP-2 possessed therapeutic effects against dextran sodium sulfate (DSS)-induced colitis in mice. ABPs, ABP-1, and ABP-2 could relieve body weight loss, colon atrophy, and histological injury, increase tight junction proteins, restore gut-barrier function, and inhibit inflammation. ABP-2 with a lower molecular weight (1.76 × 104 Da) showed a superior therapeutic effect than ABP-1 with a higher molecular weight (8.86 × 106 Da). Furthermore, the effects of ABP-1 and ABP-2 were microbiota-dependent, which worked by inducing Norank_f__Muribaculaceae and Akkermansia and inhibiting Escherichia-Shigella and Proteus. In addition, untargeted fecal metabolomic analysis revealed distinct modulation patterns of ABP-1 and ABP-2. ABP-1 mainly enriched steroid hormone biosynthesis, while ABP-2 significantly enriched bile secretion and tryptophan metabolism. In summary, ABPs, especially low-molecular-weight fraction, represent novel prebiotics for treatment of inflammatory gastrointestinal diseases.


Assuntos
Agaricus , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Polissacarídeos/farmacologia , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
17.
Fungal Genet Biol ; 170: 103864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199492

RESUMO

Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.


Assuntos
Agaricus , Agaricus/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia
18.
Int J Biol Macromol ; 260(Pt 2): 129521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246453

RESUMO

Poly (3-hydroxybutyrate) (PHB) is undoubtedly a potential substitute for petroleum-based non-biodegradable food packaging materials due to its renewability, high crystallinity, biocompatibility, and biodegradability. Nonetheless, PHB exhibits certain shortcomings, including low flexibility, moderate gas barrier properties, and negligible antimicrobial and antioxidant activities, which limit its direct application in food packaging. Loading essential oils can increase flexibility and induce antimicrobial and antioxidant activities in biopolymers but at the cost of reduced tensile strength. In contrast, nanofiller reinforcement can increase the tensile strength and barrier properties of such biopolymers. Therefore, to harness the synergistic effects of essential oil and nanofiller, PHB-based films incorporated with 5 wt% grapeseed oil (GS) and varying concentrations (0.1-1 wt%) of MgO nanoparticles (MgO NPs) were prepared in this study following simple sonication-assisted solution casting technique. Physicochemical, tensile, microstructural, optical, barrier, antimicrobial, and antioxidant properties were then evaluated for the prepared composite films. FESEM analysis of the PHB-based films with 5 wt% GS and 0.7 wt% MgO NPs (PHB/5GS/0.7MgO) confirmed its compact morphology without any aggregates, pores, or phase separation. In comparison with pristine PHB, the PHB/5GS/0.7MgO films demonstrated higher tensile strength (by 1.4-fold) and flexibility (by 30-fold), along with 79 and 90 % reduction in water vapor and oxygen transmission, respectively. In addition, PHB/5GS/0.7MgO showed good UV-blocking properties, 65.25 ± 0.98 % antioxidant activity, and completely inhibited the growth of Staphylococcus aureus and Escherichia coli. Moreover, PHB/5GS/0.7MgO films proved beneficial effects in terms of extending the shelf-life of white button mushrooms up to 6 days at ambient room conditions.


Assuntos
Agaricus , Anti-Infecciosos , Nanopartículas , Óleos Voláteis , Ácido 3-Hidroxibutírico , Óxido de Magnésio , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Embalagem de Alimentos/métodos , Biopolímeros , Óleos Voláteis/farmacologia , Expectativa de Vida
19.
J Agric Food Chem ; 72(4): 2202-2213, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247134

RESUMO

Intestinal ischemia-reperfusion (I/R) injury is a serious disease in medical settings, and gut dysbiosis is a major contributor to its development. Polysaccharides from Agaricus blazei Murill (ABM) showed a range of pharmacological activities, yet no studies assessed the potential of ABM polysaccharides for alleviating intestinal I/R injury. Here, we purified a major polysaccharide (ABP1) from an ABM fruit body and subsequently tested its potential to mitigate intestinal I/R injury in a mouse model of temporary superior mesenteric artery occlusion. The results reveal that ABP1 pretreatment enhances gut barrier function via upregulation of the expression of tight junction proteins such as ZO-1 and occludin. Additionally, ABP1 intervention reduces the recruitment of neutrophils and the polarization of M1 macrophages and limits inflammation by blocking the assembly of the NLRP3 inflammasome. Moreover, the role of ABP1 in regulating the gut microbiota was confirmed via antibiotic treatment. The omics data reveals that ABP1 reprograms gut microbiota compositions, characterized by a decrease of Proteobacteria and an increase of Lachnospiraceae and Lactobacillaceae, especially the SCFA-producing genera such as Ligilactobacillus and Blautia. Overall, this work highlights the therapeutic potential of ABP1 against intestinal I/R injury, which mainly exhibits its effects via regulating the gut microbiota and suppressing the overactivated inflammation response.


Assuntos
Agaricus , Microbioma Gastrointestinal , Traumatismo por Reperfusão , Camundongos , Animais , Polissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia
20.
PeerJ ; 12: e16501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223762

RESUMO

The occurrence of fungi is cosmopolitan, and while some mushroom species are beneficial to human health, others can be toxic and cause illness problems. This study aimed to analyze the organoleptic, ecological, and morphological characteristics of a group of fungal specimens and identify the most significant features to develop models for fungal toxicity classification using genetic algorithms and LASSO regression. The results of the study indicated that odor, spore print color, and habitat were the most significant characteristics identified by the genetic algorithm GALGO. Meanwhile, odor, gill size, stalk shape, and twelve other features were the relevant characteristics identified by LASSO regression. The importance score of the odor variable was 99.99%, gill size obtained 73.7%, stalk shape scored 39.9%, and the remaining variables did not score higher than 18%. Logistic regression, k-nearest neighbor (KNN), and XG-Boost classification algorithms were used to develop models using the features selected by both GALGO and LASSO. The models were evaluated using sensitivity, specificity, and accuracy metrics. The models with the highest AUC values were XGBoost, with a maximum value of 0.99 using the features selected by LASSO, followed by KNN with a maximum value of 0.99. The GALGO selection resulted in a maximum AUC of 0.98 in KNN and XGBoost. The models developed in this study have the potential to aid in the accurate identification of toxic fungi, which can prevent health problems caused by their consumption.


Assuntos
Agaricus , Humanos , Agaricus/genética , Algoritmos , Benchmarking , Análise por Conglomerados , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...